70 research outputs found

    On the Non-Coherent Wideband Multipath Fading Relay Channel

    Full text link
    We investigate the multipath fading relay channel in the limit of a large bandwidth, and in the non-coherent setting, where the channel state is unknown to all terminals, including the relay and the destination. We propose a hypergraph model of the wideband multipath fading relay channel, and show that its min-cut is achieved by a non-coherent peaky frequency binning scheme. The so-obtained lower bound on the capacity of the wideband multipath fading relay channel turns out to coincide with the block-Markov lower bound on the capacity of the wideband frequency-division Gaussian (FD-AWGN) relay channel. In certain cases, this achievable rate also meets the cut-set upper-bound, and thus reaches the capacity of the non-coherent wideband multipath fading relay channel.Comment: 8 pages, 4 figures, longer version (including proof) of the paper in Proc. of IEEE ISIT 201

    Optimal relay location and power allocation for low SNR broadcast relay channels

    Get PDF
    We consider the broadcast relay channel (BRC), where a single source transmits to multiple destinations with the help of a relay, in the limit of a large bandwidth. We address the problem of optimal relay positioning and power allocations at source and relay, to maximize the multicast rate from source to all destinations. To solve such a network planning problem, we develop a three-faceted approach based on an underlying information theoretic model, computational geometric aspects, and network optimization tools. Firstly, assuming superposition coding and frequency division between the source and the relay, the information theoretic framework yields a hypergraph model of the wideband BRC, which captures the dependency of achievable rate-tuples on the network topology. As the relay position varies, so does the set of hyperarcs constituting the hypergraph, rendering the combinatorial nature of optimization problem. We show that the convex hull C of all nodes in the 2-D plane can be divided into disjoint regions corresponding to distinct hyperarcs sets. These sets are obtained by superimposing all k-th order Voronoi tessellation of C. We propose an easy and efficient algorithm to compute all hyperarc sets, and prove they are polynomially bounded. Using the switched hypergraph approach, we model the original problem as a continuous yet non-convex network optimization program. Ultimately, availing on the techniques of geometric programming and pp-norm surrogate approximation, we derive a good convex approximation. We provide a detailed characterization of the problem for collinearly located destinations, and then give a generalization for arbitrarily located destinations. Finally, we show strong gains for the optimal relay positioning compared to seemingly interesting positions.Comment: In Proceedings of INFOCOM 201

    Privacy Against Statistical Inference

    Full text link
    We propose a general statistical inference framework to capture the privacy threat incurred by a user that releases data to a passive but curious adversary, given utility constraints. We show that applying this general framework to the setting where the adversary uses the self-information cost function naturally leads to a non-asymptotic information-theoretic approach for characterizing the best achievable privacy subject to utility constraints. Based on these results we introduce two privacy metrics, namely average information leakage and maximum information leakage. We prove that under both metrics the resulting design problem of finding the optimal mapping from the user's data to a privacy-preserving output can be cast as a modified rate-distortion problem which, in turn, can be formulated as a convex program. Finally, we compare our framework with differential privacy.Comment: Allerton 2012, 8 page

    When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

    Full text link
    We develop and analyze new cooperative strategies for ad hoc networks that are more spectrally efficient than classical DF cooperative protocols. Using analog network coding, our strategies preserve the practical half-duplex assumption but relax the orthogonality constraint. The introduction of interference due to non-orthogonality is mitigated thanks to precoding, in particular Dirty Paper coding. Combined with smart power allocation, our cooperation strategies allow to save time and lead to more efficient use of bandwidth and to improved network throughput with respect to classical RDF/PDF.Comment: 7 pages, 7 figure

    From the Information Bottleneck to the Privacy Funnel

    Full text link
    We focus on the privacy-utility trade-off encountered by users who wish to disclose some information to an analyst, that is correlated with their private data, in the hope of receiving some utility. We rely on a general privacy statistical inference framework, under which data is transformed before it is disclosed, according to a probabilistic privacy mapping. We show that when the log-loss is introduced in this framework in both the privacy metric and the distortion metric, the privacy leakage and the utility constraint can be reduced to the mutual information between private data and disclosed data, and between non-private data and disclosed data respectively. We justify the relevance and generality of the privacy metric under the log-loss by proving that the inference threat under any bounded cost function can be upper-bounded by an explicit function of the mutual information between private data and disclosed data. We then show that the privacy-utility tradeoff under the log-loss can be cast as the non-convex Privacy Funnel optimization, and we leverage its connection to the Information Bottleneck, to provide a greedy algorithm that is locally optimal. We evaluate its performance on the US census dataset

    Asymptotic Capacity and Optimal Precoding Strategy of Multi-Level Precode & Forward in Correlated Channels

    Full text link
    We analyze a multi-level MIMO relaying system where a multiple-antenna transmitter sends data to a multipleantenna receiver through several relay levels, also equipped with multiple antennas. Assuming correlated fading in each hop, each relay receives a faded version of the signal transmitted by the previous level, performs precoding on the received signal and retransmits it to the next level. Using free probability theory and assuming that the noise power at the relay levels - but not at the receiver - is negligible, a closed-form expression of the end-to-end asymptotic instantaneous mutual information is derived as the number of antennas in all levels grow large with the same rate. This asymptotic expression is shown to be independent from the channel realizations, to only depend on the channel statistics and to also serve as the asymptotic value of the end-to-end average mutual information. We also provide the optimal singular vectors of the precoding matrices that maximize the asymptotic mutual information : the optimal transmit directions represented by the singular vectors of the precoding matrices are aligned on the eigenvectors of the channel correlation matrices, therefore they can be determined only using the known statistics of the channel matrices and do not depend on a particular channel realization.Comment: 5 pages, 3 figures, to be published in proceedings of IEEE Information Theory Workshop 200
    corecore